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Kernels in system identification

Model class (e.g. OE models)

Ut €t
TP Héﬁ,

)
Vi = E gsli_s + € g¢ impulse response
s=1

Gaussian linear regression model

yN:¢9+eN yN:: , 0= 8
6 ~N(0,K), K kernel function YN :

gt is modeled as Gaussian process with zero mean
and covariance function Cov[g:gs] = K(t,s)
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Kernels in system identification (cont'd)
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Kernels in system identification (cont'd)

K encodes the a priori information on g; )
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Kernels in system identification (cont'd)

K encodes the a priori information on g; |

Our a priori information on the impulse response:

Bode Diagram

@ BIBO stable

@ Frequency content | I

gt
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Kernels in system identification (cont'd)

K encodes the a priori information on g; |

Our a priori information on the impulse response:

Bode Diagram

@ BIBO stable N
@ Frequency content I
PRy ‘ .
Question
How to embed this information in the kernel function? J
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Modeling the impulse response

How?

The harmonic analysis of kernel functions September 26th, 2016 4 /15



Modeling the impulse response

How?
g+ as a sum of damped sinusoids J
M
Xk
gt = Z |ckle™ 2 Fcos(wyt + Zck)
k=1
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Modeling the impulse response

How?
g+ as a sum of damped sinusoids |
M
Xk
gt = Z |ckle™ 2 Fcos(wyt + Zck)
k=1

@ ¢, complex Gaussian random variable such that:

> Cj IS zero mean
> Cov(ck, G) = pkdk—j
» Cov(ck,¢) =0
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Modeling the impulse response (cont'd)
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Modeling the impulse response (cont'd)

a1 Qg
w1
Sum of damped sinusoids in a grid k=1

w2

k=2
gt:ZZICU\e Feos(wit + Zcjj)
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Modeling the impulse response (cont'd)

a1 Qg
w1
Sum of damped sinusoids in a grid k=1

w2

k=2
gt—ZZICU\e Feos(wit + Zcjj)

“Infinite dense sum” of damped sinusoids

gt = / / |c(a,w)‘e_%t cos(wt + Zc(a,w))dwda
0 —0o0
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Modeling the impulse response (cont'd)

a1 Qg
w1
Sum of damped sinusoids in a grid k=1

w2

k=2
gt:ZZICU\e Feos(wit + Zcjj)

“Infinite dense sum” of damped sinusoids

gt = / / |c(a,w)‘e_%t cos(wt + Zc(a,w))dwda
0 —0o0

c(a,w) generalized Fourier transform of g; )
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Harmonic analysis
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Harmonic analysis

Let

g = / / lc(a,w)|e™ 2t cos(wt + Zc(a, w))dwdar
0 —o0
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Harmonic analysis

Let

g = / / lc(a,w)|e™ 2t cos(wt + Zc(a, w))dwdar
0 —o0

Harmonic representation of the kernel function K

1 0o foO oths
K(t,s) = 3/, p(a,w)e™ 2 cos(w(t — s))dwda
—00
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Harmonic analysis

Let

g = / / lc(a,w)|e™ 2t cos(wt + Zc(a, w))dwdar
0 —o0

Harmonic representation of the kernel function K

1 0o foO oths
K(t,s) = 3/, p(a,w)e™ 2 cos(w(t — s))dwda
—00

p(c,w) generalized power spectral density J

The harmonic analysis of kernel functions September 26th, 2016 6 /15



Harmonic analysis

Let

g = / / \c(a,w)\e_%t cos(wt + Zc(a,w))dwda
0 —00

Harmonic representation of the kernel function K

1 [ [ tts
K(ts)= /0 / p(a, w)e 5" cos(w(t — 5))dwda
—0o0

p(«, w) generalized power spectral density )
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Example 1: Stationary kernels
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Example 1: Stationary kernels

playw)

Choice: p(a,w) = d(a)g(w) ] o a
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Example 1: Stationary kernels

playw)

Choice: p(o,w) = d(a)g(w) J e

Stationary kernel

K(t—s)= %/ g(w) cos(w(t — s))dw g(w) power spectral density

—0o0
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Example 1: Stationary kernels

pla,w)

Choice: p(o,w) = d(a)g(w) ] e

Stationary kernel

K(t—s)= %/ g(w) cos(w(t — s))dw g(w) power spectral density

—0o0

Stationary process (“infinite dense sum” of sinusoids)

gt = / |c(w)| cos(wt + Zc(w))dw  c(w) Fourier transform

—0o0
v
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Example 1: Stationary kernels (cont'd)
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Example 1: Stationary kernels (cont'd)

@ The power spectral density is even:

_ (W) +§(=w)
q(w) - f
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Example 1: Stationary kernels (cont'd)

@ The power spectral density is even:

G(w) + d(=w)

qlw) =
(@) '
Shape G(w) Kernel
; B,
Laplacian | aw) = oo | M- =e 2 contuote = 9)
_ lw—wql
Cauchy dcw) = e P Kelt = 5) = proabz coslwo(t — 9)
. _(w=wo)® B2(t—s)?
GaUSSIan Go(w) = ﬁe 2p2 Ke(t—s)=e (tZ : cos(wo(t — s))
27
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Example 1: Stationary kernels (cont'd)

@ The power spectral density is even:

G(w) + G(=w)

g(w) =
(w) = HE
Shape G(w) Kernel
- B,
Laplacian | 4,(«) = ﬂ[(wwf)/zzﬂg/z)z] Ki(t —s) = e~ 2175 cos(uo(t — s))
_ Jw—wol
Cauchy dew)= e P Kelt = 5) = 1otz coslwo(t — 5)
. _ (w—wp)? _ BR(—s)?
Gaussian | d¢(w) = 152 e 28 Ko(t—s)—e 2 cos(wo(t — 5))
0.35 _ijb Bl
03 —dqc |
025 qc |4

wo center frequency
B bandwidth
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Example 2: Locally stationary kernels
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Example 2: Locally stationary kernels

Choice: p(a,w) = g1(a)g2(w) )
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Example 2: Locally stationary kernels

Locally stationary kernel (Silverman, 1957)

Choice: p(a,w) = q1(@)g2(w) ) K(t,s) = K1 (t —12— s) Ka(t — s)

stationary
kernel
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Example 2: Locally stationary kernels

Locally stationary kernel (Silverman, 1957)

Choice: p(a,w) = q1(@)g2(w) ] K(t,s) = K1 (t ; S> Ka(t — s)

stationary
kernel

pla,w)

Choice:  g1(a) = 0(a — @) J
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Example 2: Locally stationary kernels

Locally stationary kernel (Silverman, 1957)

stationary
kernel

Choice: p(a,w) = q1(@)g2(w) ] K(t,s) = K1 (t ; S> Ka(t — s)

w pla,w)
Choice:  qi(a) =d(a—a) |
ECLS kernel 0 |a @
K(t,s)=e ™7 Ky(t — s) J
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Example 2: Locally stationary kernels

Locally stationary kernel (Silverman, 1957)

Choice: p(a,w) = q1(@)g2(w) | K(t,s) = K1 (t ;L s> Ka(t — s)

stationary
kernel

plo,w)
Choice:  g1(a) = 0(av — @) J
ECLS kernel 0 |a @
K(t,s) = e @2 Ky(t —s) J

@ Examples of ECLS kernels (Chen-Ljung, 2015): stable-spline,
dynamic-correlated, tuned-correlated...
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Example 2: Locally stationary kernels (cont'd)
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Example 2: Locally stationary kernels (cont'd)

Probability density function of a 2°¢ order stable model

@ Transfer function

1 Lk
Oy s et

® p = X, + jx; pole of the model
@ gi process with kernel K — gy with pdf p(x,, x;)
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Example 2: Locally stationary kernels (cont'd)

Filtered Laplacian

% e a=209
@ Wy = T
s oo o5 e (3 small
Gaussian
\
i

-1 -0.5 0 0.5 1
real real

Figure: pdf of a 2°d order stable model with ECLS
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Example 2: Locally stationary kernels (cont'd)

Filtered Laplacian

£ £ e =09
@ Wy = %77'
-1 -05 0 05 1 o B |arge

real

Gaussian

imag
imag

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

real real

Figure: pdf of a 2"d order stable model with ECLS
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Example 3: Integrated kernels
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Example 3: Integrated kernels

Choice:
pla,w) = l[am,aM](O‘) Tr[wz-(i(/jﬂ)z]
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Example 3: Integrated kernels

Integrated TC kernel (Pillonetto et. al.)

Choice: e—ammax{t,;s} _ g—aymax{ts}
— 01/2 e
pla,w) = Ljay.0u () s7 1 (07277 K(t,s) max{t,s}

The harmonic analysis of kernel functions September 26th, 2016 13 /15



Example 3: Integrated kernels

Integrated TC kernel (Pillonetto et. al.)

Choice: e—ammax{t;s} _ g—aymax{ts}
/2 =
po,w) = 1[am,aM](Of)ﬁ[wz+(/a/z) ] K(t,s) max{t,s}
w pla,w)
Choice:  p(a,w) = 1jq,, ap)(@)q(w) J
0 MmN«
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Example 3: Integrated kernels

Integrated TC kernel (Pillonetto et. al.)

Choice: e—ammax{t;s} _ g—aymax{ts}
_ /2 K(t,s) =
P, @) = Lja.0u () 771 (07279 (t:5) max{t,s}
w pla,w)
Choice:  p(a,w) = 1jq,, ap)(@)q(w) J
Integrated kernel o @m @ o
—OémHis _ _OtMm
K(t,s) =22 —°¢ K(t—s)
t + stationary

kernel
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Example 3: Integrated kernels (cont'd)

Laplacian

Cauchy Gaussian

Figure: pdf of a 2°d order model with ECLS kernel

Figure: pdf of a 2" order model with INTEGRATED kernel
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Conclusions

Key points:
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Conclusions
Key points:

@ Harmonic analysis for non-stationary Gaussian processes
@ How the statistical power is distributed? generalized psd

@ Relation between the generalized psd and the pdf of the process?

Kernel design through the generalized psd J

Thank youl

The harmonic analysis of kernel functions September 26th, 2016 15 / 15



